Mirror-Induced Behavior in the Magpie (Pica pica): Evidence of Self-Recognition

Top Cited Papers
Open Access
Abstract
Comparative studies suggest that at least some bird species have evolved mental skills similar to those found in humans and apes. This is indicated by feats such as tool use, episodic-like memory, and the ability to use one's own experience in predicting the behavior of conspecifics. It is, however, not yet clear whether these skills are accompanied by an understanding of the self. In apes, self-directed behavior in response to a mirror has been taken as evidence of self-recognition. We investigated mirror-induced behavior in the magpie, a songbird species from the crow family. As in apes, some individuals behaved in front of the mirror as if they were testing behavioral contingencies. When provided with a mark, magpies showed spontaneous mark-directed behavior. Our findings provide the first evidence of mirror self-recognition in a non-mammalian species. They suggest that essential components of human self-recognition have evolved independently in different vertebrate classes with a separate evolutionary history. A crucial step in the emergence of self-recognition is the understanding that one's own mirror reflection does not represent another individual but oneself. In nonhuman species and in children, the “mark test” has been used as an indicator of self-recognition. In these experiments, subjects are placed in front of a mirror and provided with a mark that cannot be seen directly but is visible in the mirror. Mirror self-recognition has been shown in apes and, recently, in dolphins and elephants. Although experimental evidence in nonmammalian species has been lacking, some birds from the corvid family show skill in tasks that require perspective taking, a likely prerequisite for the occurrence of mirror self-recognition. Using the mark test, we obtained evidence for mirror self-recognition in the European Magpie, Pica pica. This finding shows that elaborate cognitive skills arose independently in corvids and primates, taxonomic groups with an evolutionary history that diverged about 300 million years ago. It further proves that the neocortex is not a prerequisite for self-recognition.