Abstract
It has been claimed that pattern separation in cerebellar cortex plays an important role in controlling movements and balance for vertebrates. A number of the neural models for cerebellar cortex have been proposed and their pattern separability has been analyzed. These results, however, only explain a part of pattern separability in random neural nets. The present paper is intended to study an extended theory of pattern separability in a new model with inhibitory connections. In addition to this, the effect of the number of connections on pattern separability is cleared up. It is also shown that the signal from the inhibitory connections has crucial importance for pattern separability.

This publication has 12 references indexed in Scilit: