Mounting Leadless Chip Carriers onto Printed Circuit Boards

Abstract
It is reasoned that wide penetration of chip carriers into equipment for professional and commercial applications depends on developing methods for mounting the leadless types directly on to conventional polymer type printed circuit boards. The main problem to be overcome is fatigue failure of the solder joints due to the mismatch in thermal expansion, evidenced by poor thermal cycling performance. In this paper the thermal cycling performance is compared when four sizes of ceramic leadless chip carrier are mounted on a selection of printed circuit board materials ranging from the conventional to those specially formulated, either on the basis of matching the coefficient of thermal expansion of the chip carrier material, or to provide a layer of compliant elastomer material underneath the layer bearing the copper contact layer, so that strain due to thermal expansion mismatch is not transmitted to the solder layer. Over 400 thermal cycles (−55 to + 125°C) were recorded using proprietary versions of elastomer coated substrates. For appropriate applications the basis is thus laid for an economic and technically acceptable solution. The practical implications of two methods of soldering—wave (jet) and vapour phase—are also discussed.

This publication has 2 references indexed in Scilit: