Real-time control of the energy landscape by force directs the folding of RNA molecules

Abstract
The rugged folding-energy landscapes of RNAs often display many competing minima. How do RNAs discriminate among competing conformations in their search for the native state? By using optical tweezers, we show that the folding-energy landscape can be manipulated to control the fate of an RNA: individual RNA molecules can be induced into either native or misfolding pathways by modulating the relaxation rate of applied force and even be redirected during the folding process to switch from misfolding to native folding pathways. Controlling folding pathways at the single-molecule level provides a way to survey the manifold of folding trajectories and intermediates, a capability that previously was available only to theoretical studies.