Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise

Abstract
The goal of this study was to determine whether the stress of forced exercise would result in injury to the myocardium. Male rats with 8% of body weight attached to the tail were forced to swim 3.5 h (3.5S), forced to swim 5 h (5S), or pretrained for 8 days and then forced to swim 5 h (T5S). Rats were killed immediately after they swam (0 h PS) and at 3 h (3 h PS), 24 h (24 h PS), and 48 h after they swam (48 h PS). Tissue homogenates of the left ventricle were analyzed by Western blot analysis for cardiac troponin T (cTnT). Serum cTnT was quantified by immunoassay. Results indicated that, in the 3.5S, 5S, and T5S groups, serum cTnT was significantly (P < 0.01) increased at 0 and 3 h PS. The 5S group demonstrated a greater increase in serum cTnT than the 3.5S group (P < 0.01) and the T5S group (P < 0.01) at 0 h PS. Western blot analysis indicated significant decreases (P < 0.01) in myocardial cTnT in the 5S group only at 0 h PS (P < 0.01) and 3 h PS (P < 0.05). Histological evidence of localized myocyte damage demonstrated by interstitial inflammatory infiltrates consisting of neutrophils, lymphocytes, and histiocytes, as well as vesicular nuclei-enlarged chromatin patterns, was observed in left ventricle specimens from the 5S group at 24 and 48 h PS. Our findings demonstrate that stressful, forced exercise induces alterations in myocardial cTnT and that training before exercise attenuates the exercise-induced heart damage.