Some aspects of salinity, plant density, and nutrient effects onCressa creticaL.

Abstract
The effects of salinity, density, and nutrient on the growth, reproduction, and ecophysiology of a perennial halophyte, Cressa cretica L., were studied. Lower salinity concentration (425 mM) promoted the growth, but the highest salinity (850 mM) did not have a significant effect. Plants grew faster and were healthier at low density treatment. Lack of nitrogen (N) in the medium substantially inhibited shoot growth. Higher rhizome length and increased dry weight were some of the symptoms of N‐deficiency. Phosphorus (P)‐free plants also showed higher dry weight and higher ratio of rhizomes to shoots. Reproductive capacity of Cressa cretica plants was not affected by the absence of P. Growth and reproduction of Cressa cretica plants were significantly inhibited by potassium (K) deficiency. Optimal plant growth was recorded in complete nutrient solution. Higher concentrations of oxalate were found in plants growing under low density conditions and in non‐saline controls. Proline concentration increased with the increase in salinity of the medium. Chlorophyll a and b synthesis were inhibited by high salinity treatments whereas changes in density regimes did not have an effect.