Projective module description of the q-monopole
Preprint
- 30 August 1998
Abstract
The Dirac q-monopole connection is used to compute projector matrices of quantum Hopf line bundles for arbitrary winding number. The Chern-Connes pairing of cyclic cohomology and K-theory is computed for the winding number -1. The non-triviality of this pairing is used to conclude that the quantum principal Hopf fibration is non-cleft. Among general results, we provide a left-right symmetric characterization of the canonical strong connections on quantum principal homogeneous spaces with an injective antipode. We also provide for arbitrary strong connections on algebraic quantum principal bundles (Hopf-Galois extensions) their associated covariant derivatives on projective modules.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: