Mechanism of Antiviral Drug Resistance of Vaccinia Virus: Identification of Residues in the Viral DNA Polymerase Conferring Differential Resistance to Antipoxvirus Drugs
- 15 December 2008
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 82 (24) , 12520-12534
- https://doi.org/10.1128/jvi.01528-08
Abstract
The acyclic nucleoside phosphonate (ANP) family of drugs shows promise as therapeutics for treating poxvirus infections. However, it has been questioned whether the utility of these compounds could be compromised through the intentional genetic modification of viral sequences by bioterrorists or the selection of drug resistance viruses during the course of antiviral therapy. To address these concerns, vaccinia virus (strain Lederle) was passaged 40 times in medium containing an escalating dose of (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)-2,6-diaminopurine [(S)-HPMPDAP], which selected for mutant viruses exhibiting a approximately 15-fold-increased resistance to the drug. (S)-HPMPDAP-resistant viruses were generated because this compound was shown to be one of the most highly selective and effective ANPs for the treatment of poxvirus infections. DNA sequence analysis revealed that these viruses encoded mutations in the E9L (DNA polymerase) gene, and marker rescue studies showed that the phenotype was produced by a combination of two (A684V and S851Y) substitution mutations. The effects of these mutations on drug resistance were tested against various ANPs, both separately and collectively, and compared with E9L A314T and A684V mutations previously isolated using selection for resistance to cidofovir, i.e., (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)cytosine]. These studies demonstrated a complex pattern of resistance, although as a general rule, the double-mutant viruses exhibited greater resistance to the deoxyadenosine than to deoxycytidine nucleotide analogs. The S851Y mutant virus exhibited a low level of resistance to dCMP analogues but high-level resistance to dAMP analogues and to 6-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine, which is considered to mimic the purine ring system. Notably, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine retained marked activity against most of these mutant viruses. In vitro studies showed that the A684V mutation partially suppressed a virus growth defect and mutator phenotype created by the S851Y mutation, but all of the mutant viruses still exhibited a variable degree of reduced virulence in a mouse intranasal challenge model. Infections caused by these drug-resistant viruses in mice were still treatable with higher concentrations of the ANPs. These studies have identified a novel mechanism for the development of mutator DNA polymerases and provide further evidence that antipoxviral therapeutic strategies would not readily be undermined by selection for resistance to ANP drugs.This publication has 63 references indexed in Scilit:
- Isolation and characterization of cidofovir resistant vaccinia virusesVirology Journal, 2008
- Cidofovir and (S)-9-[3-Hydroxy-(2-Phosphonomethoxy)Propyl]Adenine Are Highly Effective Inhibitors of Vaccinia Virus DNA Polymerase When Incorporated into the Template StrandAntimicrobial Agents and Chemotherapy, 2008
- Activities of Several Classes of Acyclic Nucleoside Phosphonates against Camelpox Virus Replication in Different Cell Culture ModelsAntimicrobial Agents and Chemotherapy, 2007
- Synthesis and antiviral evaluation of alkoxyalkyl-phosphate conjugates of cidofovir and adefovirAntiviral Research, 2007
- Inhibitory Activities of Three Classes of Acyclic Nucleoside Phosphonates against Murine Polyomavirus and Primate Simian Virus 40 StrainsAntimicrobial Agents and Chemotherapy, 2007
- Mutations in the E9L Polymerase Gene of Cidofovir-Resistant Vaccinia Virus Strain WR Are Associated with the Drug Resistance PhenotypeAntimicrobial Agents and Chemotherapy, 2006
- Cidofovir Resistance in Vaccinia Virus Is Linked to Diminished Virulencein MiceJournal of Virology, 2006
- Acyclic nucleoside phosphonates: a key class of antiviral drugsNature Reviews Drug Discovery, 2005
- Clinical and biologic aspects of human cytomegalovirus resistance to antiviral drugsHuman Immunology, 2004
- Structure of the Replicating Complex of a Pol α Family DNA PolymeraseCell, 2001