Early Decrease of XRCC1, a DNA Base Excision Repair Protein, May Contribute to DNA Fragmentation After Transient Focal Cerebral Ischemia in Mice
- 1 November 1999
- journal article
- research article
- Published by Wolters Kluwer Health in Stroke
- Vol. 30 (11) , 2456-2463
- https://doi.org/10.1161/01.str.30.11.2456
Abstract
Background and Purpose —DNA damage and the DNA repair mechanism are known to be involved in ischemia/reperfusion injury in the brain. The x-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in the DNA base excision repair pathway by interacting with DNA ligase III and DNA polymerase β. The present study examined the protein expression of XRCC1 and DNA fragmentation before and after transient focal cerebral ischemia (FCI). Methods —Adult male CD-1 mice were subjected to 60 minutes of FCI by intraluminal blockade of the middle cerebral artery. XRCC1 protein expression was analyzed by immunohistochemistry and Western blot analysis. DNA damage was evaluated by gel electrophoresis and terminal deoxynucleotidyl transferase–mediated uridine 5′-triphosphate-biotin nick end-labeling (TUNEL). The spatial relationship between XRCC1 expression and DNA damage was examined by double staining with XRCC1 and TUNEL after FCI. Results —Immunohistochemistry showed the nuclear expression of XRCC1 in all regions of the control brains and that it was predominant in the hippocampus. The XRCC1 level was markedly reduced in the caudate putamen at 10 minutes, further decreased in the entire middle cerebral artery territory at 1 hour, and remained reduced until 4 and 24 hours after FCI. Western blot analysis of the normal control brain showed a characteristic band of 70 kDa, which decreased after FCI. A significant amount of DNA fragmentation was detected by DNA gel electrophoresis 24 hours but not 4 hours after FCI. Double staining showed that the neurons that lost XRCC1 immunoreactivity became TUNEL positive. Conclusions —These results suggest that the early decrease of XRCC1 and the failure of the DNA repair mechanism may contribute, at least in part, to DNA fragmentation after FCI.Keywords
This publication has 29 references indexed in Scilit:
- Early Decrease of Apurinic/Apyrimidinic Endonuclease Expression after Transient Focal Cerebral Ischemia in MiceJournal of Cerebral Blood Flow & Metabolism, 1999
- XRCC1 Protein Interacts with One of Two Distinct Forms of DNA Ligase IIIBiochemistry, 1997
- Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome cPublished by Elsevier ,1996
- Expression of the DNA repair gene XRCC1 in baboon tissuesMutation Research Letters, 1995
- Transgenic Mice and Knockout Mutants in the Study of Oxidative Stress in Brain InjuryJournal of Neurotrauma, 1995
- Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosisNature, 1995
- Temporal Profile of in situ DNA Fragmentation after Transient Middle Cerebral Artery Occlusion in the RatJournal of Cerebral Blood Flow & Metabolism, 1995
- Endonuclease activation following focal ischemic injury in the rat brainBrain Research, 1993
- Alterations in expression and structure of the DNA repair gene XRCC1Biochemical and Biophysical Research Communications, 1992
- The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell deathDevelopmental Biology, 1990