Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells
- 1 April 2005
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Renal Physiology
- Vol. 288 (4) , F740-F747
- https://doi.org/10.1152/ajprenal.00380.2004
Abstract
The Na+/phosphate cotransporter NaPi-IIa (SLC34A1) is the major transporter mediating the reabsorption of Piin the proximal tubule. Expression and activity of NaPi-IIa is regulated by several factors, including parathyroid hormone, dopamine, metabolic acidosis, and dietary Piintake. Dopamine induces natriuresis and phosphaturia in vivo, and its actions on several Na+-transporting systems such as NHE3 and Na+-K+-ATPase have been investigated in detail. Using freshly isolated mouse kidney slices, perfused proximal tubules, and cultured renal epithelial cells, we examined the acute effects of dopamine on NaPi-IIa expression and localization. Incubation of isolated kidney slices with the selective D1-like receptor agonists fenoldopam (10 μM) and SKF-38393 (10 μM) for 1 h induced NaPi-IIa internalization and reduced expression of NaPi-IIa in the brush border membrane (BBM). The D2-like selective agonist quinpirole (1 μM) had no effect. The D1and D2agonists did not affect the renal Na+/sulfate cotransporter NaSi in the BBM of the proximal tubule. Studies with isolated perfused proximal tubules demonstrated that activation of luminal, but not basolateral, D1-like receptors caused NaPi-IIa internalization. In kidney slices, inhibition of PKC (1 μM chelerythrine) or ERK1/2 (20 μM PD-098089) pathways did not prevent the fenoldopam-induced internalization. Inhibition with the PKA blocker H-89 (10 μM) abolished the effect of fenoldopam. Immunoblot demonstrated a reduction of NaPi-IIa protein in BBMs from kidney slices treated with fenoldopam. Incubation of opossum kidney cells transfected with NaPi-IIa-green fluorescent protein chimera shifted fluorescence from the apical membrane to an intracellular pool. In summary, dopamine induces internalization of NaPi-IIa by activation of luminal D1-like receptors, an effect that is mediated by PKA.Keywords
This publication has 37 references indexed in Scilit:
- Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubuleKidney International, 2003
- Impaired PTH-induced endocytotic down-regulation of the renal type IIa Na+/Pi-cotransporter in RAP-deficient mice with reduced megalin expressionPflügers Archiv - European Journal of Physiology, 2003
- Regulation of Na/Pi Transporter in the Proximal TubuleAnnual Review of Physiology, 2003
- Growth-related Renal Type II Na/Pi CotransporterPublished by Elsevier ,2002
- Intrarenal serotonin, dopamine, and phosphate handling in remnant kidneysKidney International, 2001
- Dopamine inhibits Na/K-ATPase in single tubules and cultured cells from distal nephronPflügers Archiv - European Journal of Physiology, 1992
- Dopamine receptor subtypes in renal brush border and basolateral membranesKidney International, 1989
- A high yield preparation for rat kidney brush border membranes Different behaviour of lysosomal markersBiochimica et Biophysica Acta (BBA) - Biomembranes, 1981
- Phosphaturic effect of dopamine in dogs. Possible role of intrarenally produced dopamine in phosphate regulation.Journal of Clinical Investigation, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970