High frequency plant regeneration from immature embryos of an elite barley cultivar (Hordeum vulgare L. cv. Morex)

Abstract
An efficient plant regeneration system was developed for Hordeum vulgare L. 'Morex' barley, an important United States malting cultivar. The protocol was based on a series of experiments involving the sizes of immature embryos and the culture media. We found that the embryo size is critical for the establishment of embryogenic callus. Smaller embryos (0.5–1.5 mm) showed a much higher ability to produce embryogenic callus capable of regenerating green plants with fewer albinos than did the larger embryos (1.6–3.0 mm). Either 3 mg/l 2,4-dichlorophenoxyacetic acid or dicamba in modified Murashige and Skoog's (MS) medium was optimum for the induction of embryogenic callus. The embryogenic callus maintained high regeneration during six subcultures in the callus induction medium. Efficient shoot regeneration was obtained on modified MS medium containing 0.5–1.0 mg/l 6-benzylaminopurine (BA). Regenerated shoots were rooted on half-strength MS medium containing 0.2 mg/l IBA. Plants were successfully transferred to soil and grown to maturity in the greenhouse. This efficient plant regeneration system provides a foundation for generating transgenic plants of this important barley cultivar.