Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
- 24 January 2007
- journal article
- Published by ASME International in Journal of Biomechanical Engineering
- Vol. 129 (4) , 611-618
- https://doi.org/10.1115/1.2746387
Abstract
Passive elastic behavior of arterial wall remains difficult to model. Although phenomenological and structural models exist, the question of how the three-dimensional network structure of the collagen in the artery determines its mechanical properties is still open. A model is presented that incorporates a collagen network as well as the noncollagenous material that comprise the artery. The collagen architecture is represented as a network of interconnected fibers, and a neo-Hookean constitutive equation is used to describe the contribution of the noncollagenous matrix. The model is multiscale in that volume-averaging theory is applied to the collagen network, and it is structural in that parameters of the microstructure of the collagen network were considered instead of a macroscopic constitutive law. The computational results provided a good fit to published experimental data for decellularized porcine carotid arteries. The model predicted increased circumferential compliance for increased axial stretch, consistent with previously published reports, and a relatively small sensitivity to open angle. Even at large extensions, the model predicted that the noncollagenous matrix would be in compression, preventing collapse of the collagen network. The incorporation of fiber-fiber interactions led to an accurate model of artery wall behavior with relatively few parameters. The counterintuitive result that the noncollagenous component is in compression during extension and inflation of the tissue suggests that the collagen is important even at small strains, with the noncollagenous components supporting the network, but not resisting the load directly. More accurate representation of the microstructure of the artery wall is needed to explore this issue further.Keywords
This publication has 48 references indexed in Scilit:
- Hyperelastic modelling of arterial layers with distributed collagen fibre orientationsJournal of The Royal Society Interface, 2005
- A Constitutive Framework for Tubular Structures that Enables a Semi-inverse Solution to Extension and InflationJournal of Elasticity, 2004
- A constitutive formulation of arterial mechanics including vascular smooth muscle toneAmerican Journal of Physiology-Heart and Circulatory Physiology, 2004
- Building a functional artery: issues from the perspective of mechanicsFrontiers in Bioscience-Landmark, 2004
- Finite Element Models for Arterial Wall MechanicsJournal of Biomechanical Engineering, 1993
- A layered cylindrical shell model for an aortaInternational Journal of Engineering Science, 1991
- On Residual Stresses in ArteriesJournal of Biomechanical Engineering, 1986
- Flow in porous media I: A theoretical derivation of Darcy's lawTransport in Porous Media, 1986
- Analysis of the passive mechanical properties of rat carotid arteriesJournal of Biomechanics, 1983
- Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and ExperimentsJournal of Biomechanical Engineering, 1980