Abstract
We describe a system we developed that enabled simultaneous measurements of either epithelial calcium ion concentration ([Ca2+]i) or sodium ion concentration [Na+]i with the ciliary beat frequency (CBF) in native ciliated epithelia using either Fura-2 (AM) or SBFI (AM) ratiometric fluorescence photon counting along with nonstationary laser light scattering. Studies were performed using native epithelial tissues obtained from ovine tracheae. The dynamic range of the laser light-scattering system was determined by a simulated light “beating” experiment. The nonstationary CBF was demonstrated by the time-frequency analysis of the raw photon count sequences of backscattered heterodyne photons from cultured and native epithelia. Calibrations of calcium and sodium ion concentrations were performed using the respective Fura-2 and SBFI impermanent salts as well as in native epithelia. The cumulative responses of 10−6, 10−5, and 10−4} M nifedipine on [Ca2+]i together with the CBF as well as the cumulative responses of 10−5, 10−4, and 10−3 M amiloride on [Na+]i together with the CBF were also determined. Nifedipine decreased [Ca2+]i but had no effect on CBF. Amiloride decreased [Na+]i and CBF. Stimulation of CBF corresponded with either an increase of [Na+]i or an increase of [Ca2+]i. Decreases of [Na+]i or substantial decreases of [Ca2+]i were associated with decreases in the CBF. These data demonstrate the utility of this system for investigating the regulatory mechanisms of intracellular ions dynamics and the CBF in native epithelia. © 1998 Biomedical Engineering Society. PAC98: 8780+s, 8722-q, 4262Be

This publication has 0 references indexed in Scilit: