Globally Convergent Newton Methods for Nonsmooth Equations

Abstract
This paper presents some globally convergent descent methods for solving systems of nonlinear equations defined by locally Lipschitzian functions. These methods resemble the well-known family of damped Newton and Gauss-Newton methods for solving systems of smooth equations; they generalize some recent Newton-like methods for solving B-differentiable equations which arise from various mathematical programs.

This publication has 0 references indexed in Scilit: