Abstract
This paper is a continuation of “Stable vector bundles on algebraic surfaces” [10]. For simplicity we deal with non-singular projective varieties over the field of complex numbers. Let W be a variety whose fundamental group is solvable, let H be an ample line bundle on W, and let f: V → W be an unramified covering. Then we show in section 1 that if E is an f*H-stable vector bundle on V then f*E is a direct sum of H-stable vector bundles. In particular f*L is a direct sum of simple vector bundles if L is a line bundle on V.

This publication has 7 references indexed in Scilit: