Reductions of self-dual Yang-Mills fields and classical systems
- 27 August 1990
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 65 (9) , 1085-1087
- https://doi.org/10.1103/physrevlett.65.1085
Abstract
One-dimensional reductions of the self-dual Yang-Mills equations yield various classical systems depending on the choice of the Lie algebra associated with the self-dual fields. Included are the Euler-Arnold equations for rigid bodies in n dimensions, the Kovalevskaya top, and a generalization of the Nahm equation which is related to a classical third-order differential equation possessing a movable natural boundary in the complex plane.Keywords
This publication has 9 references indexed in Scilit:
- A connection between the Einstein and Yang-Mills equationsCommunications in Mathematical Physics, 1989
- The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutionsCommunications in Mathematical Physics, 1989
- Nonlinear Schrödinger and korteweg-de Vries are reductions of self-dual Yang-MillsPhysics Letters A, 1989
- The Kowalewski and Hénon-Heiles motions as Manakov geodesic flows onSO(4) — a two-dimensional family of Lax pairsCommunications in Mathematical Physics, 1988
- ON UNIFORMIZATION OF RIEMANN SURFACES AND THE WEIL-PETERSSON METRIC ON TEICHMÜLLER AND SCHOTTKY SPACESMathematics of the USSR-Sbornik, 1988
- The Positive Action conjecture and asymptotically Euclidean metrics in quantum gravityCommunications in Mathematical Physics, 1979
- Construction of instantonsPhysics Letters A, 1978
- Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixesActa Mathematica, 1911
- Sur le probleme de la rotation d'un corps solide autour d'un point fixeActa Mathematica, 1889