Reductions of self-dual Yang-Mills fields and classical systems

Abstract
One-dimensional reductions of the self-dual Yang-Mills equations yield various classical systems depending on the choice of the Lie algebra associated with the self-dual fields. Included are the Euler-Arnold equations for rigid bodies in n dimensions, the Kovalevskaya top, and a generalization of the Nahm equation which is related to a classical third-order differential equation possessing a movable natural boundary in the complex plane.