Endothelin-1 Alters the Contractile Phenotype of Cultured Embryonic Smooth Muscle Cells
- 1 June 1997
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 80 (6) , 885-893
- https://doi.org/10.1161/01.res.80.6.885
Abstract
Smooth muscle tissues may be classified into phasic (fast) or tonic (slow) contractile phenotypes. This study was initiated to examine the specification of these phenotypes during development and the role of growth factors in this process. We used myosin light chain 17 (MLC17) and myosin heavy chain transcript splice variants as markers of the tonic (aortic) and phasic (intestinal) smooth muscle phenotypes in chick embryos. By reverse transcription–polymerase chain reaction, we determined embryonic days 6 to 16 to be a critical period for the establishment of these phenotypes. During this period, endothelin-1 is present at 40-fold-higher levels in aortic compared with intestinal tissues. To test the hypothesis that endothelin-1 may be involved in establishing the aortic (tonic) phenotype, we developed a system in which embryonic smooth muscle cells exhibit phasic and tonic contractile properties in vitro. Single-cell force measurements showed that cultured embryonic gizzard (phasic) cells developed force more rapidly (8±2 seconds) and achieved greater force (3.0±0.7 μN) than did cultured embryonic aortic (tonic) cells (20±0.7 seconds, 0.76±0.01 μN; P<.05) in response to depolarization. Chronic exposure of the phasic (gizzard) cells to endothelin-1 prolonged the time to peak force (24±3 seconds) and reduced the peak force (1.0±0.1 μN), so that the contraction resembled the tonic type. This effect, mediated by the endothelin-A receptor, was associated with a shift in MLC17 splicing to the tonic pattern. These results demonstrate that endothelin-1 is highly enriched in developing aortic compared with intestinal tissues and can convert phasic smooth muscle cells to the tonic type in vitro, suggesting a role for this growth factor during development in determining the contractile phenotype of smooth muscle cells.Keywords
This publication has 21 references indexed in Scilit:
- Growth and differentiation of smooth muscle cells during vascular developmentTrends in Cardiovascular Medicine, 1996
- Developmental and Tissue Distribution of Expression of Nonmuscle and Smooth Muscle Isoforms of Myosin Light Chain KinaseBiochemical and Biophysical Research Communications, 1995
- Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1.Journal of Clinical Investigation, 1995
- Signal transduction and regulation in smooth muscleNature, 1994
- The molecular biology of heart failureJournal of the American College of Cardiology, 1993
- Molecular cloning of the chicken gizzard telokin gene and cDNAArchives of Biochemistry and Biophysics, 1992
- Endothelin-1 inhibits adipogenic differentiation of 3T3-L1 preadipocytesBiochemical and Biophysical Research Communications, 1991
- A novel potent vasoconstrictor peptide produced by vascular endothelial cellsNature, 1988
- Endothelial cells in culture produce a vasoconstrictor substanceJournal of Cellular Physiology, 1987
- Neural Crest Cells Contribute to Normal Aorticopulmonary SeptationScience, 1983