Factors affecting the ratio of different organic osmolytes in renal medullary cells
- 1 November 1990
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Renal Physiology
- Vol. 259 (5) , F847-F858
- https://doi.org/10.1152/ajprenal.1990.259.5.f847
Abstract
Renal medullary cells contain high concentrations of sorbitol, inositol, glycerophosphorylcholine (GPC), and betaine, which balance the variably high osmolality of extracellular NaCl. We found that PAP-HT25 (rabbit renal medullary) cells in tissue culture increase their content of all four when medium osmolality is increased by adding NaCl and urea. However, this requires that betaine be added to medium in addition to customary constituents. Some factors affecting the mix of organic osmolytes in these cells during hypertonicity are as follows. 1) Urea in medium increases cell GPC and tends to decrease others, particularly betaine. 2) With small increases in medium NaCl, intracellular inositol is highest, whereas sorbitol predominates with large NaCl increases. 3) When osmolality is suddenly decreased, these four organic osmolytes exit rapidly from cells, but in differing relative amounts (betaine much greater than sorbitol greater than inositol much greater than GPC). 4) Altering cell betaine levels (by varying betaine in medium) causes reciprocal changes in cell sorbitol (by affecting aldose reductase activity) and vice versa, whereas inositol and GPC are less affected. 5) Raising medium glucose concentration (from which sorbitol is synthesized) increases cell sorbitol and decreases cell inositol and betaine. 6) Decreasing the amount of GPC in cells (by removing choline from medium) causes small changes in betaine and sorbitol, but not in inositol. Changing the amount of inositol does not affect the others. Similar interrelations may operate in vivo to vary the mix of organic osmolytes in renal medulla.Keywords
This publication has 0 references indexed in Scilit: