Genome-wide association with bone mass and geometry in the Framingham Heart Study
Top Cited Papers
Open Access
- 1 January 2007
- journal article
- research article
- Published by Springer Nature in BMC Medical Genetics
- Vol. 8 (Suppl 1) , S14-13
- https://doi.org/10.1186/1471-2350-8-s1-s14
Abstract
Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms. We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates ≥80%, HWE p ≥ 0.001, and MAF ≥10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers. Heritability estimates for all bone phenotypes were 30–66%. LOD scores ≥3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679–58,934,236 bp) and 22 (35,890,398–48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 × 10-6 and 2.5 × 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 . The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.Keywords
This publication has 52 references indexed in Scilit:
- The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reportsBMC Medical Genetics, 2007
- Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in menBone, 2007
- Proximal hip geometry is linked to several chromosomal regions: Genome-wide linkage results from the Framingham Osteoporosis StudyBone, 2007
- Meta-Analysis of Genome-Wide Scans Provides Evidence for Sex- and Site-Specific Regulation of Bone MassJournal of Bone and Mineral Research, 2007
- Coverage and Characteristics of the Affymetrix GeneChip Human Mapping 100K SNP SetPLoS Genetics, 2006
- Sex-specific quantitative trait loci contribute to normal variation in bone structure at the proximal femur in menBone, 2005
- Epidemiology and outcomes of osteoporotic fracturesThe Lancet, 2002
- Two New Single-Nucleotide Polymorphisms in the COL1A1 Upstream Regulatory Region and Their Relationship to Bone Mineral DensityJournal of Bone and Mineral Research, 2002
- Risk Factors for Longitudinal Bone Loss in Elderly Men and Women: The Framingham Osteoporosis StudyJournal of Bone and Mineral Research, 2000
- The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: A study of postmenopausal twinsJournal of Bone and Mineral Research, 1996