Subdecoherent information encoding in a quantum-dot array
- 15 March 1999
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 59 (12) , 8170-8181
- https://doi.org/10.1103/physrevb.59.8170
Abstract
A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation considered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation, as well as register design may enhance the decoherence time by several orders of magnitude. This behavior stems from the effective one-dimensional character of the phononic environment in the relevant region of physical parameters.Keywords
All Related Versions
This publication has 26 references indexed in Scilit:
- Theory of quantum error-correcting codesPhysical Review A, 1997
- Bulk Spin-Resonance Quantum ComputationScience, 1997
- Quantum computation and Shor's factoring algorithmReviews of Modern Physics, 1996
- Measurement of Conditional Phase Shifts for Quantum LogicPhysical Review Letters, 1995
- Demonstration of a Fundamental Quantum Logic GatePhysical Review Letters, 1995
- Quantum Computers, Factoring, and DecoherenceScience, 1995
- Quantum ComputationScience, 1995
- Ultrafast Coherent Control and Destruction of Excitons in Quantum WellsPhysical Review Letters, 1995
- Quantum Computations with Cold Trapped IonsPhysical Review Letters, 1995
- Maintaining coherence in quantum computersPhysical Review A, 1995