Abstract
This report provides computed thermal mappings for bedded salt surrounding canisters containing nuclear waste. This information can be used to study the possible migration of fluids within bedded salt under the influence of thermal gradients created by the heat-generating nuclear waste. The results presented were obtained from CINDA thermal models. Three different drift/canister configurations were modeled. The thermal conductivity of the salt was assumed to be temperature dependent while both the density and specific heat were assumed to be constant. Thermal power densities of 30, 75, and 150 kW/acre were examined with canister powers of 0.581 kW (51.6 canisters/acre), 3.5 kW (21.4 canisters/acre), and 3.5 kW (42.9 canisters/acre) at emplacement, respectively. These three cases resulted in maximum salt temperatures of 55/sup 0/C, 117/sup 0/C, and 176/sup 0/C, respectively; and maximum thermal gradients of -15/sup 0/C/m, -63/sup 0/C/m, and -101/sup 0/C/m, respectively. Computer-generated plots of temperature versus distance in horizontal planes at the top, midpoint, and bottom of the canister were made for several times after emplacement. Logarithmic or linear equations (whichever provided the better fit) were used to describe these curves. Derivatives of temperature with respect to distance were then taken and results of the form x(dT/dx) and dT/dx formore » the logarithmic and linear equations, respectively, were plotted against time. For the two cases where the waste thermal outputs decayed exponentially, it was found that x(dT/dx) and dT/dx were linear functions of time over a large period of years. « less

This publication has 0 references indexed in Scilit: