THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR

Abstract
The terminal velocities for distilled water droplets falling through stagnant air are accurately determined. More than 1500 droplets of mass from 0.2 to 100,000 micrograms, embracing droplets so small that Stokes' law is obeyed up to and including droplets so large that they are mechanically unstable, were measured by a new method employing electronic techniques. An apparatus for the production of electrically charged artificial water droplets at a controllable rate is described. The over-all accuracy of the mass-terminal-velocity measurements is better than 0.7 per cent. Abstract The terminal velocities for distilled water droplets falling through stagnant air are accurately determined. More than 1500 droplets of mass from 0.2 to 100,000 micrograms, embracing droplets so small that Stokes' law is obeyed up to and including droplets so large that they are mechanically unstable, were measured by a new method employing electronic techniques. An apparatus for the production of electrically charged artificial water droplets at a controllable rate is described. The over-all accuracy of the mass-terminal-velocity measurements is better than 0.7 per cent.