Electron Correlation and Charge Transfer Instability in Bilayered Two Dimensional Electron Gas

Abstract
We prove that the predicted charge transfer state in symmetric bilayers of two dimensional electron gases is always unstable at zero bias voltage, due to interlayer correlation and/or tunneling. This is most easily seen by resorting to a pseudospin formalism and considering coherent states obtained from the charge transfer state through rotations of the pseudospins. Evidently, the charge transfer state is stabilized by a sufficiently strong gate voltage, as found in recent experiments. We show that a simple model, in which the layers are strictly two dimensional, is able to account quantitatively for such experimental findings, when correlation is properly included.

This publication has 0 references indexed in Scilit: