Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp

Abstract
Pathogenic mycobacteria survive within phagosomes which are thought to represent a nutrient-restricted environment. Divalent cation transporters of the Nramp family in phagosomes and mycobacteria (Mramp) may compete for metals that are crucial for bacterial survival. The elemental concentrations in phagosomes of macrophages infected with wild-typeMycobacterium tuberculosis(M. tuberculosisstrain H37Rv) and aM. tuberculosis Mrampknockout mutant (Mramp-KO), derived from a clinical isolate isogenic to the strain MT103, were compared. Time points of 1 and 24 h after infection of mouse peritoneal macrophages (bcgS) were compared in both cases. Increased concentrations of P, Ni and Zn and reduced Cl concentration in Mramp-KO after 1 h of infection were observed, compared toM. tuberculosisvacuoles. After 24 h of infection, significant differences in the P, Cl and Zn concentrations were still present. The Mramp-KO phagosome showed a significant increase of P, Ca, Mn, Fe and Zn concentrations between 1 and 24 h after infection, while the concentrations of K and Ni decreased. In theM. tuberculosisvacuole, the Fe concentration showed a similar increase, while the Cl concentration decreased. The fact that the concentration of several divalent cations increased in the Mramp-KO strain suggests that Mramp may have no impact on the import of these divalent cations into the mycobacterium, but may function as a cation efflux pump. The concordant increase of Fe concentrations withinM. tuberculosis, as well as within the Mramp-KO vacuoles, implies that Mramp, in contrast to siderophores, might not be important for the attraction of Fe and its retention in phagosomes of unstimulated macrophages.