Self-Organized Criticality in the Olami-Feder-Christensen Model

Abstract
A system is in a self-organized critical state if the distribution of some measured events obeys a power law. The finite-size scaling of this distribution with the lattice size is usually enough to assume that the system displays self-organized criticality. This approach, however, can be misleading. In this paper we analyze the behavior of the branching rate σ of the events to establish whether a system is in a critical state. We apply this method to the Olami-Feder-Christensen model to obtain evidence that, in contrast to previous results, the model is critical in the conservative regime only.