Model-based curve evolution technique for image segmentation

Abstract
©2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), December 2001.DOI: 10.1109/CVPR.2001.990511We propose a model-based curve evolution technique for segmentation of images containing known object types. In particular, motivated by the work of Leventon et al. (2000), we derive a parametric model for an implicit representation of the segmenting curve by applying principal component analysis to a collection of signed distance representations of the training data, The parameters of this representation are then calculated to minimize an objective function for segmentation. We found the resulting algorithm to be computationally efficient, able to handle multidimensional data, robust to noise and initial contour placements, while at the same time, avoiding the need for point correspondences during the training phase of the algorithm. We demonstrate this technique by applying it to two medical applications

This publication has 8 references indexed in Scilit: