The effect of drop size on flame propagation in liquid aerosols

Abstract
A method has been developed whereby suspensions of controlled uniform drop size can be prepared from pure liquids. Using tetralin as the fuel, it has thus been possible, within limits, to study the effect of the drop size on the combustion properties of a liquid-in-air suspension. Through a study of limits of inflammability, nitrogen dilution limits and burning velocities, it has been shown that the mechanism of flame propagation is completely transformed within the drop-size range 7 to 55μ. Below 10μ the suspension behaves like a vapour, but above 40μ the drops burn individually, in their own air envelope, and one burning drop ignites adjacent ones, thus spreading combustion. At intermediate sizes, behaviour is transitional. A practical consequence of this transformation is that the lower concentration limit of inflammability is reduced and the rate of burning increased for the larger drops.