Abstract
We formulate an axiom, HYP, and from it construct a normal, metacompact, nonmetrizable Moore space. HYP unifies two better known axioms. The Continuum Hypothesis implies HYP; the nonexistence of an inner model with a measurable cardinal implies HYP. As a consequence, it is impossible to replace Nyikos’ "provisional" solution to the normal Moore space problem with a solution not involving large cardinals. Finally, we discuss how this space continues a process of lowering the character for normal, not collectionwise normal spaces.

This publication has 9 references indexed in Scilit: