Experimental study of the influence of wind on Benjamin–Feir sideband instability

Abstract
A laboratory investigation of the influence of wind on the evolution of mechanically generated regular (m.g.r.) waves is reported. Surface elevation measurements were made at four fetches for steep (0.1 < < 0.2, 2 Hz) m.g.r. waves, moderate (15 < u* < 25 cm s−1, 3–6 Hz) wind waves, and combinations of the m.g.r. and wind waves. The m.g.r. wave spectra exhibit Benjamin—Feir sidebands that grow exponentially with fetch and whose growth rate increases as the initial wave steepness increases. As fetch increases for the wind cases, total energy increases and the frequency of the spectral maximum downshifts, but no spectral lines representing Benjamin—Feir sidebands were detected even though the wave steepness and fetch were similar to the m.g.r. waves whose spectra displayed sidebands. As wind speed increased over the m.g.r. waves, sideband magnitude, sideband growth rate and low-frequency perturbation components associated with the instability mechanism were reduced.