Mass Spectrometry Screening of Combinatorial Mixtures, Correlation of Measured and Predicted Electrospray Ionization Spectra

Abstract
Methodology was developed to afford rapid characterization of multicomponent mixtures of small organic molecules prepared by split-and-mix combinatorial synthesis. This methodology involved the use of liquid chromatography mass spectrometry (LC/MS) combined with correlation analysis of measured versus predicted electrospray ionization mass spectra. Low-resolution mass spectra of complex mixtures revealed predictable patterns that confirm library products, assisted in identifying chemical synthesis errors, and assessed overall library integrity. In general, equal signal intensities were observed for most combinatorial mixture components, indicating that differences in electrospray ionization efficiency was not a major limitation to this approach. High-throughput data processing programs and informatics tools were used to speed data analysis and to simplify the presentation of the library characterization results. This approach has been used to characterize combinatorial libraries that were synthesized for a variety of drug-discovery programs. Examples are shown for library formats of 1, 40, 66, 280, and 400 component(s)/well. The applicability of this approach to large combinatorial mixtures should allow direct characterization of massive combinatorial libraries.