Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds

Abstract
A series of semifluorinated 1-bromoalkane (SFBA) mesogens have been synthesized and characterized to better understand their solid state crystalline and liquid crystalline structures. In the solid state, the local conformation of the fluorocarbon segments becomes disordered once the fluorocarbon chain reaches a length above eight CF units. This is evident from the pronounced decrease of molar melting enthalpy. An increasing amount of helix and helix reverse conformations and increasingly disordered packing can also be observed with each addition of a fluorocarbon segment. X-ray diffraction peaks in the small angle region can be indexed by a tilted, two dimensional layered (herring bone) structure. The crystal structure is similar to a type of plastic crystal in which the amphiphilic character is clear, because the two segments of fluorocarbon and hydrocarbon are almost immiscible. Heating of F(CF2)12(CH2)10Br leads to a transition from plastic crystal to smectic B, as revealed by time-resolved XRD and FTIR analysis. At this solid-to-liquid transition temperature, conformational analysis confirmed an onset of the CH2 gauche conformation within the hexagonal lattice, most likely due to changes occurring in the hydrocarbon segment, and a sudden increase of helix defects along the fluorocarbon segment. The disordered helix rigid-rod structure of the fluorocarbon segment and its poor compatibility with the hydrocarbon segment play an important role in the crystalline solid and liquid crystalline structures.