Superparamagnetic Clustering of Data

Abstract
We present a new approach for clustering, based on the physical properties of an inhomogeneous ferromagnetic model. We do not assume any structure of the underlying distribution of the data. A Potts spin is assigned to each data point and short range interactions between neighboring points are introduced. Spin-spin correlations, measured (by Monte Carlo procedure) in a superparamagnetic regime in which aligned domains appear, serve to partition the data points into clusters. Our method outperforms other algorithms for toy problems as well as for real data.

This publication has 14 references indexed in Scilit: