Abstract
Integrated-circuit memories using bipolar transistor technology are compared with memories based on various forms of the insulated-gate field-effect transistor (IGFET). A combination of p-channel IGFET memory cells with bipolar transistor access circuits appears to offer a desirable combination of characteristics. Memory organization, chip design, packaging, and interconnection alternatives are considered. Beam-lead sealed-junction technology has significant advantages over other packaging and interconnection technologies in the realization of semiconductor memory. Some of the problems expected in the design of a million-bit computer memory are examined with attention to power dissipation, interconnections, reliability, maintainability, and cost. Finally, the potential characteristics of a million-bit semiconductor memory based on today's technology are compared with the characteristics of ferrite core, planar film, and cylindrical film magnetic memories. The conclusion drawn from this exploratory study is that semiconductor memory has attractive potential for both small- and large-capacity memory applications.