DROPLET-ELECTRIFICATION PROCESSES AND COAGULATION IN STABLE AND UNSTABLE CLOUDS
Open Access
- 1 December 1955
- journal article
- Published by American Meteorological Society in Journal of Meteorology
- Vol. 12 (6) , 511-518
- https://doi.org/10.1175/1520-0469(1955)012<0511:depaci>2.0.co;2
Abstract
The fundamental electromechanics of droplet electrification and coagulation within stable and unstable clouds is investigated. The analysis shows that atmospheric ions formed by cosmic rays or other means normally diffuse onto cloud droplets and electrify them. A nearly Gaussian distribution is established in which about half of the droplets in any selected volume of a stable cloud acquire a positive charge that is typically eleven electronic units, while the other half is negative. More than 9.5 per cent of the droplets of a typical cloud are electrified. When droplet association is negligible, an equipartition is established between the thermal kinetic energy of the droplets and their electrical potential energy. In an unstable cloud, these electrified droplets mechanically associate by relative motion in the gravitational field. Thus, the growing droplets accumulate charge and a statistical distribution of highly charged droplets is established. Expressions are derived for the distribution and... Abstract The fundamental electromechanics of droplet electrification and coagulation within stable and unstable clouds is investigated. The analysis shows that atmospheric ions formed by cosmic rays or other means normally diffuse onto cloud droplets and electrify them. A nearly Gaussian distribution is established in which about half of the droplets in any selected volume of a stable cloud acquire a positive charge that is typically eleven electronic units, while the other half is negative. More than 9.5 per cent of the droplets of a typical cloud are electrified. When droplet association is negligible, an equipartition is established between the thermal kinetic energy of the droplets and their electrical potential energy. In an unstable cloud, these electrified droplets mechanically associate by relative motion in the gravitational field. Thus, the growing droplets accumulate charge and a statistical distribution of highly charged droplets is established. Expressions are derived for the distribution and...Keywords
This publication has 0 references indexed in Scilit: