Theory of Random Evolutions with Applications to Partial Differential Equations

Abstract
The selection from a finite number of strongly continuous semigroups by means of a finite-state Markov chain leads to the new notion of a random evolution. Random evolutions are used to obtain probabilistic solutions to abstract systems of differential equations. Applications include one-dimensional first order hyperbolic systems. An important special case leads to consideration of abstract telegraph equations and a generalization of a result of Kac on the classical n-dimensional telegraph equation is obtained and put in a more natural setting. In this connection a singular perturbation theorem for an abstract telegraph equation is proved by means of a novel application of the classical central limit theorem and a representation of the solution for the limiting equation is found in terms of a transformation formula involving the Gaussian distribution.