Abstract
Define $Z(t)$ to be the forward recurrence time at $t$ for a renewal process with interarrival time distribution, $F$, which is assumed to be IMRL (increasing mean residual life). It is shown that $E\phi(Z(t))$ is increasing in $t \geq 0$ for all increasing convex $\phi$. An example demonstrates that $Z(t)$ is not necessarily stochastically increasing nor is the renewal function necessarily concave. Both of these properties are known to hold for $F$ DFR (decreasing failure rate).