Error analysis of look-up-table implementations in device-independent color imaging systems
- 15 April 1994
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 2170, 98-107
- https://doi.org/10.1117/12.173860
Abstract
In device-independent color imaging systems, it is necessary to relate device color coordinates to and from standard colorimetric or appearance based color spaces. Such relationships are determined by mathematical modeling techniques with error estimates commonly quoted with the CIELAB (Delta) E metric. Due to performance considerations, a lookup table (LUT) is commonly used to approximate the model. LUT approximation accuracy is affected by the number of LUT entries, the distribution of the LUT data, and the interpolation technique used (full linear interpolation using cubes or hypercubes versus partial linear interpolation using tetrahedrons or hypertetrahedrons). Error estimates of such LUT approximations are not widely known. An overview of the modeling process and lookup table approximation technique is given with a study of relevant error analysis techniques. The application of such error analyses is shown for two common problems (converting scanner RGB and prepress proofing CMYK color definitions to CIELAB). In each application, (Delta) E statistics are shown for LUTs based on the above contributing factors. An industry recommendation is made for a standard way of communicating error information about interpolation solutions that will be meaningful to both vendors and end users.Keywords
This publication has 0 references indexed in Scilit: