Abstract
The development of a physical model of cancellous bone whose structure could be controlled would provide significant advantages over the study of in vitro samples, making repetitive or comparative testing possible. This would enable the relationship between the mechanical integrity (and hence fracture risk) of cancellous bone and its structural properties to be more exactly defined. Whilst the use of RP to generate these porous objects was a considerable challenge such objects would have been impossible to manufacture using any other approach. This short technical note describes how stereolithography was used to create over 25 accurate models, which were required to perform physical experiments to validate the results of the FEA. The note highlights how problems associated with STL and SLC file formats, support generation and software limitations were overcome to produce stereolithography models of highly complex, naturally occurring three‐dimensional structures.

This publication has 0 references indexed in Scilit: