Abstract
Sodium ions injected into giant neurones of Helix aspersa by diffusion from low-resistance microelectrodes caused hyperpolarization of the cells. Under these conditions the behaviour of the resting potential could be described by a modified ‘constant-field’ equation, including a term representing the effect of a potassiumsensitive, electrogenic sodium pump. Exposure to potassium-free solution, ouabain or cyanide abolished the hyperpolarization, and caused a gradual fall in the intracellular potassium concentration, as estimated from the constant-field equation. Assuming that this fall was due to replacement of intracellular potassium by injected sodium ions, it was possible to calculate the rates of injection and pumping of sodium ions, and, using the measured membrane resistance of the cell, the hyperpolarization which the sodium pump could cause, if it were electrogenic. This was related to the observed hyperpolarization, supporting the view that the latter was caused by stimulation of the electrogenic sodium pump.