The turbulent layer in the water at an air—water interface

Abstract
The velocity fields beneath an air—water interface have been determined in a laboratory facility for the cases of wind-generated waves, with wind speeds ranging from 1.5 to 13.1 m/s, and of wind-ruffled mechanically generated waves of about 22 mm amplitude and 1 Hz frequency, with wind speeds ranging from 1.7 to 6.2 m/s. The velocity was measured in a fixed frame of reference with a two-component, laser-Doppler anemometer. It was possible to determine the lengthscales and evaluate the behaviour of the mean, wave-related and turbulent components of the flows. The waves affect the mean flows, even though the profiles remain essentially logarithmic and the wave field conforms generally with the results of linear theory. In the wind-wave cases the turbulent quantities behave similarly to those in flows over flat plates. They have different trends in the mechanical-wave cases, suggesting a coupling between waves and turbulence. Finally, measured values of the mean wave-induced shear stress were negative, leading to an energy transfer from the waves to the mean flow.