Abstract
As early as 1893, mineralogist W.C. Broegger recognized the first example of the transition from the crystalline to aperiodic (amorphous) state in minerals and defined the term “metamikte.” Metamict minerals were considered to be one of three classes of amorphous materials (porodine and hyaline being the other two), but distinguishable as phases that were originally crystalline, as evidenced by well-developed crystal faces. The amorphous state was determined on the basis of a characteristic conchoidal fracture and optical isotropy. There was no mention of radiation damage as a potential cause. In 1914, Hamberg first suggested that metamictization is a radiation-induced, periodic-to-aperiodic phase transition caused by alpha-decay of the constituent radioactive uranium and thorium. In the late 1930s, Stackelberg and Rottenbach tried to test this hypothesis directly by bombarding a thin slab of zircon with alpha particles. Although unsuccessful, the experiment must have been one of the first in which an “ion beam” was used to “modify” a material. After this early effort, there was little research on metamict minerals, and they remained a mineralogical curiosity.R.C. Ewing's interest in this topic began in the early 1970s. Since then, there has been a continuing research program using modern analytical techniques on minerals that have received α-decay doses up to 1026α-decay events/m3over geologic time periods up to 109years. As an example, electron diffraction patterns have shown that naturally occurring zirconolites (CaZrTi2O7) containing varying concentrations of thorium oxide (up to 19 wt% ThO2) are amorphized to different degrees depending on their age and the resulting α-decay event dose (Figure 1).