Abstract
There are three regimes of gravitational-radiation-reaction-induced inspiral for a compact body with mass μ, in a circular, equatorial orbit around a Kerr black hole with mass Mμ: (i) the adiabatic inspiral regime, in which the body gradually descends through a sequence of circular, geodesic orbits; (ii) a transition regime, near the innermost stable circular orbit (isco); (iii) the plunge regime, in which the body travels on a geodesic from slightly below the isco into the hole’s horizon. This paper gives an analytic treatment of the transition regime and shows that, with some luck, gravitational waves from the transition might be measurable by the space-based LISA mission.
All Related Versions