Gravitational lensing in the strong field limit
Top Cited Papers
- 22 November 2002
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 66 (10) , 103001
- https://doi.org/10.1103/physrevd.66.103001
Abstract
We provide an analytic method to discriminate among different types of black holes on the grounds of their strong field gravitational lensing properties. We expand the deflection angle of the photon in the neighborhood of complete capture, defining a strong field limit, in opposition to the standard weak field limit. This expansion is worked out for a completely generic spherically symmetric spacetime, without any reference to the field equations and just assuming that the light ray follows the geodesics equation. We prove that the deflection angle always diverges logarithmically when the minimum impact parameter is reached. We apply this general formalism to Schwarzschild, Reissner-Nordström, and Janis-Newman-Winicour black holes. We then compare the coefficients characterizing these metrics and find that different collapsed objects are characterized by different strong field limits. The strong field limit coefficients are directly connected to the observables, such as the position and the magnification of the relativistic images. As a concrete example, we consider the black hole at the center of our galaxy and estimate the optical resolution needed to investigate its strong field behavior through its relativistic images.Keywords
All Related Versions
This publication has 12 references indexed in Scilit:
- Reissner-Nordström black hole lensingPhysical Review D, 2002
- Gravitational lensing by naked singularitiesPhysical Review D, 2002
- Strong Field Limit of Black Hole Gravitational LensingGeneral Relativity and Gravitation, 2001
- The geometry of photon surfacesJournal of Mathematical Physics, 2001
- Schwarzschild black hole lensingPhysical Review D, 2000
- Spacetime perspective of Schwarzschild lensingPhysical Review D, 2000
- Viewing the Shadow of the Black Hole at the Galactic CenterThe Astrophysical Journal, 2000
- Global Structure of the Kerr Family of Gravitational FieldsPhysical Review B, 1968
- Reality of the Schwarzschild SingularityPhysical Review Letters, 1968
- Lens-Like Action of a Star by the Deviation of Light in the Gravitational FieldScience, 1936