Experimental feasibility study of energy-resolved fan-beam coherent scatter computed tomography

Abstract
Energy-resolved fan beam coherent scatter computed tomography (CSCT) is a novel X-ray based imaging method revealing structural information on the molecular level of tissue or other material under investigation with high resolution of the momentum-transfer dependent coherent scatter cross-section. Since the molecular structure is the source of contrast a very good material discrimination and possibly also medical diagnosis of structural changes of tissue can be achieved with this technique. Poor spectral resolution as found in previous work due to the application of a polychromatic X-ray source can be overcome when energy-resolved detection is used. In this paper experimental results on phantoms using an energy-resolving CdTe-detector are shown. With the present setup the spatial resolution was found to be 4.5 mm (FWHM) and a spectral resolution of 6% was achieved. Applications of this technique can be found in medical imaging, material analysis and baggage inspection.

This publication has 0 references indexed in Scilit: