NMR studies on hydrophobic interactions in solution Part 4. Temperature and concentration dependence of the hydrophobic self-association of tert-butanol in water
- 1 January 1999
- journal article
- research article
- Published by Royal Society of Chemistry (RSC) in Physical Chemistry Chemical Physics
- Vol. 1 (19) , 4615-4618
- https://doi.org/10.1039/a905705f
Abstract
The hydrophobic self-association of tert-butanol was investigated in binary aqueous mixtures at 10, 25 and 40°C by the application of NMR techniques. The association tendency of the organic compound was monitored using the so-called (self)-association parameter A22 obtained by means of the measurement of intermolecular 1H–1H dipole–dipole relaxation rates of the methyl protons and of self-diffusion coefficients of tert-butanol molecules. The composition dependence of A22 shows that the self-association of tert-butanol increases with dilution and reaches a maximum at a concentration of about 2–3 mol% at 25°C. At lower concentrations a decrease is observed. The concentration corresponding to the maximum of A22 can be viewed as a transition point separating the tert-butanol concentration range (within the water-rich domain) in two regions, the low concentration region being dominated by single hydrophobically hydrated tert-butanol molecules whereas the high concentration region is characterised by microstructures where tert-butanol molecules are hydrophobically associated. With increasing temperature the association tendency is enhanced and the A22 maximum is shifted to lower tert-butanol concentrations, diminishing the extent of the hydrophobic hydration region. The occurrence of two structurally different regions is discussed in the light of literature results from other methods.Keywords
This publication has 0 references indexed in Scilit: