Abstract
Macrozooplankton size structure and taxonomic composition in warm‐core ring 82B was examined from a time series (March, April, June) of ring center MOCNESS (1 m) samples. Size distributions of 15 major taxonomic groups were determined from length measurements digitized from silhouette photographs of the samples. Silhouette digitization allows rapid quantification of Zooplankton size structure and taxonomic composition. Length/weight regressions, determined for each taxon, were used to partition the biomass (displacement volumes) of each sample among the major taxonomic groups. Zooplankton taxonomic composition and size structure varied with depth and appeared to coincide with the hydrographic structure of the ring. In March and April, within the thermostad region of the ring, smaller herbivorous/omnivorous Zooplankton, including copepods, crustacean larvae, and euphausiids, were dominant, whereas below this region, larger carnivores, such as medusae, ctenophores, fish, and decapods, dominated. Copepods were generally dominant in most samples above 500 m. Total macrozooplankton abundance and biomass increased between March and April, primarily because of increases in herbivorous taxa, including copepods, crustacean larvae, and larvaceans. A marked increase in total macrozooplankton abundance and biomass between April and June was characterized by an equally dramatic shift from smaller herbivores (1.0–3.0 mm) in April to large herbivores (5.0–6.0 mm) and carnivores (>15 mm) in June. Species identifications made directly from the samples suggest that changes in trophic structure resulted from seeding type immigration and subsequent in situ population growth of Slope Water zooplankton species.