Microbial larvicides for malaria control in The Gambia
Open Access
- 7 June 2007
- journal article
- Published by Springer Nature in Malaria Journal
- Vol. 6 (1) , 76
- https://doi.org/10.1186/1475-2875-6-76
Abstract
Background: Mosquito larval control may prove to be an effective tool for incorporating into integrated vector management (IVM) strategies for reducing malaria transmission. Here the efficacy of microbial larvicides against Anopheles gambiae s.l. was tested in preparation for a large-scale larviciding programme in The Gambia. Methods: The impact of water-dispersible (WDG) and corn granule (CG) formulations of commercial Bacillus sphaericus strain 2362 (Bs; VectoLex®) and Bacillus thuringiensis var.israelensis strain AM65-52 (Bti; VectoBac®) on larval development were tested under laboratory and field conditions to (1) identify the susceptibility of local vectors, (2) evaluate the residual effect and re-treatment intervals, (3) test the effectiveness of the microbials under operational application conditions and (4) develop a method for large-scale application. Results: The major malaria vectors were highly susceptible to both microbials. The lethal concentration (LC) to kill 95% of third instar larvae of Anopheles gambiae s.s. after 24 hours was 0.023 mg/l (14.9 BsITU/l) for Bs WDG and 0.132 mg/l (396 ITU/l) for Bti WDG. In general Bs had little residual effect under field conditions even when the application rate was 200 times greater than the LC95. However, there was a residual effect up to 10 days in standardized field tests implemented during the dry season. Both microbials achieved 100% mortality of larvae 24–48 hours post-application but late instar larvae were detected 4 days after treatment. Pupae development was reduced by 94% (95% Confidence Interval = 90.8–97.5%) at weekly re-treatment intervals. Field tests showed that Bs had no residual activity against anopheline larvae. Both microbials provided complete protection when applied weekly. The basic training of personnel in identification of habitats, calibration of application equipment and active larviciding proved to be successful and achieved full coverage and control of mosquito larvae for three months under fully operational conditions. Conclusion: Environmentally safe microbial larvicides can significantly reduce larval abundance in the natural habitats of The Gambia and could be a useful tool for inclusion in an IVM programme. The costs of the intervention in this setting could be reduced with formulations that provide a greater residual effect.Keywords
This publication has 48 references indexed in Scilit:
- Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural KenyaTropical Medicine & International Health, 2006
- INHIBITION OF ADULT EMERGENCE OF AEDES AEGYPTI IN SIMULATED DOMESTIC WATER-STORAGE CONTAINERS BY USING A CONTROLLED-RELEASE FORMULATION OF PYRIPROXYFENJournal of the American Mosquito Control Association, 2006
- Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia?Tropical Medicine & International Health, 2005
- The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western KenyaTropical Medicine & International Health, 2004
- The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan villageActa Tropica, 2003
- Effects of the mosquito larvicides temephos and methoprene on insect populations in experimental pondsEnvironmental Toxicology and Chemistry, 2000
- A malaria control trial using insecticide-treated bed nets and targeted chemoprophylaxis in a rural area of The Gambia, West AfricaTransactions of the Royal Society of Tropical Medicine and Hygiene, 1993
- Comparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvaeJournal of Invertebrate Pathology, 1990
- Formulations and Persistence of Bacillus sphaericus in Culex quinquefasciatus Larval Sites in Tropical AfricaPublished by Springer Nature ,1990
- Efficacy of Bacillus sphaericus 2362 against larvae of Anopheles gambiae under laboratory and field conditions in West AfricaMedical and Veterinary Entomology, 1987