The structure of liquid water at an extended hydrophobic surface

Abstract
Molecular dynamics simulations have been carried out for liquid water between flat hydrophobic surfaces. The surfaces produce density oscillations that extend at least 10 Å into the liquid, and significant molecular orientational preferences that extend at least 7 Å into the liquid. The liquid structure nearest the surface is characterized by ‘‘dangling’’ hydrogen bonds; i.e., a typical water molecule at the surface has one potentially hydrogen‐bonding group oriented toward the hydrophobic surface. This surface arrangement represents a balance between the tendencies of the liquid to maximize the number of hydrogen bonds on the one hand, and to maximize the packing density of the molecules on the other. A detailed analysis shows that the structural properties of the liquid farther from the surface can be understood as effects imposed by this surface structure. These results show that the hydration structure of large hydrophobic surfaces can be very different from that of small hydrophobic molecules.