Reaction of Monosubstituted Hydrazines and Diazenes with Rat‐Liver Cytochrome P450

Abstract
The alkyldiazenes RN = NH (R = CH3 or C2H5) react with reduced microsomal cytochrome P450 leading to complexes exhibiting a Soret peak at 446 nm. Upon oxidation of the [cytochrome P450-Fe(II)(CH3N = NH)] complex with limited amounts of dioxygen, a new complex charaterized by a Soret peak at 486 nm is formed. The latter complex was also formed upon slow reaction of methyldiazene with microsomal cytochrome P450-Fe(III) or in situ oxidation of methylhdrazine by limited amounts of O2 or ferricyanide. This complex is rapidly destroyed by O2 or ferricyanide in excess and more slowly by excess dithionite in the presence of CO. Reactions of ethyldiazene or benzyldiazene with cytochrome P450-Fe(III) afforded similar complexes characterized by Soret peaks around 480 nm. These results, when compared to those recently described on reactions of monosubstituted hydrazines RNHNH2 and diazenes RN = NH with hemoglobin and iron-porphyrins, are consistent with a [cytochrome P450-Fe(II)(RN = NH)] structure for the 446-nm-absorbing complexes and a σ-alkyl cytochrome P450-Fe(III)-R structure for the complexes characterized by a Soret peak around 480 nm. They also suggest a σ-cytochrome P450-Fe(III)-Ph structure for the complex derived from phenylhydrazine oxidation, recently described in the literature. Finally, they provide the first evidence that cytochrome P450-Fe(III)-R complexes are formed upon microsomal oxidation of alkyl or phenylhydrazines.

This publication has 26 references indexed in Scilit: