Antibodies bind protein antigens over large sterically and electrostatically complementary surfaces. Van der Waals forces, hydrogen bonds, and occasionally ion pairs provide stability to antibody-antigen complexes. In addition, water molecules contribute hydrogen bonds linking antigen and antibody, and increase the complementarity of antigen-antibody interfaces. In qualification to a strict 'lock and key' mechanism, evidence of conformational changes between free and complexed antibodies indicate some accommodation to the antigen. Antibody-protein antigen reactions are enthalpically driven with varying degrees of entropic compensation, often dependent on the magnitude of the enthalpy of the reaction. In the case of two antibody-combining sites studied by X-ray diffraction, the relative arrangements of the variable domains of the light and heavy chains of the antibody change slightly from the free to the antigen-bound state. Furthermore, the contacting residues of both antibodies exhibit similar reduced mo...